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In this paper, we study the equilibrium behavior of Eigen’s quasispecies equations for an arbitrary gene
network. We consider a genome consisting ofN genes, so that the full genome sequences may be written as
s=s1s2¯sN, wheresi are sequences of individual genes. We assume a single fitness peak model for each
gene, so that genei has some “master” sequencesi,0 for which it is functioning. The fitness landscape is then
determined by which genes in the genome are functioning and which are not. The equilibrium behavior of this
model may be solved in the limit of infinite sequence length. The central result is that, instead of a single error
catastrophe, the model exhibits a series of localization to delocalization transitions, which we term an “error
cascade.” As the mutation rate is increased, the selective advantage for maintaining functional copies of certain
genes in the network disappears, and the population distribution delocalizes over the corresponding sequence
spaces. The network goes through a series of such transitions, as more and more genes become inactivated,
until eventually delocalization occurs over the entire genome space, resulting in a final error catastrophe. This
model provides a criterion for determining the conditions under which certain genes in a genome will lose
functionality due to genetic drift. It also provides insight into the response of gene networks to mutagens. In
particular, it suggests an approach for determining the relative importance of various genes to the fitness of an
organism, in a more accurate manner than the standard “deletion set” method. The results in this paper also
have implications for mutational robustness and what C.O. Wilke termed “survival of the flattest.”
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I. INTRODUCTION

A challenging problem in quantitative biology is to suc-
cessfully model the evolutionary response of organisms to
various environmental pressures. Aside from its intrinsic in-
terest, the development of models which can predict the time
evolution of a population’ genotype could prove useful in
understanding a number of important phenomena, such as
antibiotic drug resistance, cancer, viral replication dynamics,
and immune response.

Perhaps the simplest formalism for modeling, at least phe-
nomenologically, the evolutionary dynamics of replicating
organisms is known as the quasispecies model[1,2]. This
model was introduced by Eigen in 1971 as a way to describe
the in vitro evolution of single-stranded RNA genomes[1].
In the simplest formulation of the model, we consider a
population of asexually replicating genomes, whose only
source of variability is induced by point mutations during
replication. We assume that each genome, denoted bys, may
be written ass=s1. . .sL, where each “base”si is drawn from
an alphabet of sizeS. With each genome is associated a
first-order growth rate constantks, which we assume to be
genome dependent, since different genomes are expected to
be differently suited to the given environment. The set of all
growth rate constants is termed thefitness landscape, which
will generally be time dependent.

Replication and mutation give rise to mutational flow be-
tween the genomes. If we letns denote the number of organ-
isms with genomes, then,

dns

dt
= o

s8

kmss8,sdns8, s1d

where kmss8 ,sd denotes the first-order mutation rate con-
stant froms8 to s. If pmss8 ,sd denotes the probability that,
after replication,s8 produces the daughter genomes, then
clearly kmss8 ,sd=ks8pmss8 ,sd. To computepmss8 ,sd, we
assume a per base replication error probabilityes for genome
s (different genomes may have different replication error
probabilities, since some genomes may code for various re-
pair mechanisms which other genomes do not). It is then
readily shown that[3],

pmss8,sd = S es8

S− 1
DDHss,s8d

s1 − es8d
L−DHss,s8d, s2d

whereDHss ,s8d denotes the Hamming distance betweens
ands8.

In order to model the relative competition between vari-
ous genomes, it proves convenient to reexpress the dynamics
in terms of population fractions. Definingn=osns, and xs

=ns /n, we obtain the system of equations,

dxs

dt
= o

s8

kmss8,sdxs8 − k̄stdxs, s3d

where k̄std;osksxs, and is therefore simply the mean fit-
ness of the population.

The above system of equations is physically realizable in
a chemostat, which continuously siphons off organisms to
maintain a constant population size[4]. This ensures that
growth is not resource limited, so the assumption of simple
exponential growth is a good one. It should be pointed out,*Electronic address: etannenb@fas.harvard.edu
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however, that it is possible to introduce a death term which
places a cap on the population size, without changing the
form of the quasispecies equations. If we introduce a second-
order crowding term(logistic growth), so that,

dns

dt
= o

s8

kmss8,sdns8 − kdnsn, s4d

then if kd is genome independent it is readily shown that
when converting to thexs the quasispecies equations are
unchanged[5].

The quasispecies equations may be written in vector form
as,

dxW

dt
= AxW − skW ·xWdxW , s5d

where xW =sxsd is the vector of population fractions,A
=(Ass8=kmss8 ,sd) is the matrix of first-order mutation rate
constants, andkW =sksd is the vector of first-order growth rate
constants. For a static fitness landscape, it has been shown
that xW evolves to the equilibrium distribution given by the
eigenvector corresponding to the largest eigenvalue ofA
[2,5,6].

A considerable amount of research on quasispecies theory
has focused on the simplest possible fitness landscape,
known as thesingle fitness peak(SFP) landscape[6–13]. In
the SFP model, there exists a single, “master” sequences0
for which ks0

=k.1, while for all other sequences we have
ks=1. The SFP model assumes a genome-independent mu-
tation rate, so thates=e for all s.

The SFP landscape is analytically solvable in the limit of
infinite sequence length. The equilibrium behavior of the
model exhibits two distinct regimes: a localized regime,
where the genome population clusters about the master se-
quence(giving rise to the term “quasispecies”), and a delo-
calized regime, where the genome population is distributed
essentially uniformly over the entire sequence space. The
transition between the two regimes is known as theerror
catastrophe, and can be shown to occur whenprep, the prob-
ability of correctly replicating a genome, drops below 1/k
[6]. The error catastrophe is generally regarded as the central
result of quasispecies theory, and it has been experimentally
verified in both viruses[14] and bacteria[15]. Indeed, the
error catastrophe has been shown to be the basis for a num-
ber of antiviral therapies[14].

The structure of the quasispecies equations naturally lends
itself to application to more complex systems than RNA mol-
ecules. Indeed, the model has been used to successfully
model certain aspects of the immune response to viral infec-
tion [16]. However, in their original form, the quasispecies
equations fail to capture a number of important aspects of the
evolutionary dynamics of real organisms. For example, it is
implicitly assumed that each genome replicatesconserva-
tively, meaning that the original genome is preserved by the
replication process. Correct modeling of DNA-based life
must take into account the fact that DNA replication issemi-
conservative[17]. Furthermore, the assumption of a genome-
independent replication error probability is also too simple,
since cells often have various repair mechanisms which may

become inactivated due to mutations[17]. In addition,
Eigen’s model neglects the effects of recombination, trans-
position, insertions, deletions, and gene duplication, to name
a few additional sources of variability. Thus, a considerable
amount of work remains to be done before a quantitative
theory of evolutionary response is developed.

Nevertheless, some progress has been made. For example,
semiconservative replication was recently incorporated into
the quasispecies model[18]. A simple model incorporating
genetic repair was developed in[3,19]. Diploidy has been
studied in[20], and finite size effects in[21,22].

One area in which more realistic models need to be de-
veloped is in the nature of the fitness landscape. As men-
tioned previously, the most common landscape studied thus
far has been the single fitness peak. However, genomes gen-
erally contain numerous genes(even the simplest of bacteria,
the mycoplasmas, have several hundred genes[23]), which
work in concert to confer viability to the organism. There-
fore, in this paper, we consider the behavior of the model for
an arbitrary gene network. We assume conservative replica-
tion and a genome-independent error rate for simplicity,
though we hypothesize at the end of the paper how our re-
sults change for the case of semiconservative replication.

This paper is organized as follows. In the following sec-
tion, we introduce our generalizedN-gene model defining the
“gene network.” We first give the quasispecies equations in
terms of the population fractions of each of the various ge-
nomes. We proceed to the infinite sequence length equations,
and then obtain a reduced system of equations which dictates
the equilibrium solution of our model. We solve the model in
Sec. III. For the sake of completeness, we include a simple
example to illustrate how our solution method may be ap-
plied to specific systems. We go on in Sec. IV to discuss the
results and implications of our model, such as the relation to
Wilke’s “survival of the flattest”[24–26], and also what our
model says about the response of gene networks to mu-
tagens. Finally, we conclude in Sec. V with a summary of
our results and future research plans.

II. THE N-GENE MODEL

A. Basic equations

Consider a population of conservatively replicating,
asexual organisms, whose genomes consist ofN genes. Each
genomes may then be written ass=s1. . .sN. Let us as-
sume, for simplicity, a “single fitness peak” landscape for
each gene. That is, for each genei there is a “master” se-
quencesi,0 for which the gene is functional, while for all
si Þsi,0 the gene is nonfunctional. We assume that the fit-
ness associated with a given genomes is dictated by which
genes in the genome are functional, and which are not. We
let khi1,. . .,inj denote the fitness of organisms with genomes

such that si =si,0 for i [ h1, . . . ,Nj / hi1, . . . ,inj, while si

Þsi,0 for i [ hi1, . . . ,inj (we adopt the convention that
hi1, . . . ,inj=h j=x whenn=0). We assume that the fitnesses
are all strictly positive. Without loss of generality(i.e., by an
appropriate rescaling of the time), we may assume that
kh1,. . .,Nj=1.
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The choice of the landscapehkhi1,. . .,inj u hi1, . . . ,inj
# h1, . . . ,Nj ,n=0,1, . . . ,Nj is arbitrary, so that the activities
of the various genes in the genome are generally correlated.
This correlation arises from the fact that the genes do not
function independently to confer fitness to the organism.
Rather, these genes define components of various biological
systems, which are defined by gene-gene, gene-protein, and
protein-protein interactions(as well as the interactions with
the messenger RNAs). It is these various systems that are
responsible for cell growth and replication. Thus, theN
genes may be regarded as defining a “gene network.”

The simplest quasispecies equations for thisN-gene
model are obtained by assuming a genome-independent per
base replication error probabilitye. We assume that genei
has a sequence lengthLi, and we defineL=L1+¯ +LN.
Thenpmss8 ,sd=pmss18 ,s1d¯pmssN8 ,sNd, where

pmssi8,sid = S e

S− 1
DDHssi8,sid

s1 − edLi−DHssi8,sid. s6d

Putting everything together, we obtain the system of equa-
tions

dxs1¯sN

dt
= o

s18

¯ o
sN8

ks18. . .sN8p
i=1

N S e

S− 1
DDHssi8,sid

3 s1 − edLi−DHssi8,sidxs18¯sN8
− k̄stdxs1¯sN

. s7d

Define the Hamming class CHsl1, . . . ,lNd=hs
=s1¯sNuDHssi ,si,0d= l i , i =1, . . . ,Nj. Also, define zl1,. . .,lN
=os[CHsl1,. . .,lNdxs. By the symmetry of the landscape, we
may assume thatxs depends only on thel i corresponding to
s, and hence we may look at the total population fraction in
CHsl1, . . . ,lNd and study its dynamics. The conversion of the
quasispecies equations in terms ofxs to zl1,. . .,lN

is accom-
plished by a generalization of the method given in[3]. The
result is

dzl1,. . .,lN

dt
= o

l1,1=0

L1−l1

o
l1,2=0

l1

¯ o
lN,1=0

LN−lN

o
lN,2=0

lN

p
i=1

N SLi − l i − l i,1 + l i,2
l i,2

D
3Sl i,1 + l i − l i,2

l i,1
De l i,2s1 − edLi−l i−l i,1S e

S− 1
Dl i,1

3S1 −
e

S− 1
Dl i−l i,2

zl1,1+l1−l1,2,. . .,lN,1+lN−lN,2

− k̄stdzl1,. . .,lN
. s8d

We now let theLi →` in such a way that theai ;Li /L and
m;Le remain fixed. We assume that theai are all strictly
positive (allowing anai to be 0 leads to certain difficulties
which we choose not to address in this paper). Because the
probability of correctly replicating a genome is simply
s1−edL→e−m, fixing m is equivalent to fixing the genome
replication fidelity in the limit of infinite sequence length.

In this limit, it is possible to show that, for each genei,
the only terms in Eq.(8) which survive the limiting process
are thel i,1=0 terms[3]. This is equivalent to the statement
that, in the limit of infinite sequence length, backmutations
may be neglected. We also obtain that

SLi − l i + l i,2
l i,2

De l i,2 → 1

l i,2!
saimdl i,2, s9d

and

s1 − edLi−l i → e−aim. s10d

The final result is

dzl1,. . .,lN

dt
= e−m o

l18=0

l1

¯ o
lN8=0

lN kl1−l18,. . .,lN−lN8

l18 ! ¯ lN8 !

3 sa1mdl18 ¯ saNmdlN8zl1−l18,. . .,lN−lN8
− k̄stdzl1,. . .,lN

.

s11d

It should be noted that the neglect of back mutations is
valid only when one can group population fractions into
Hamming classes. In our case, by the symmetry of the fitness
landscape, the equilibrium solution depends only on the
Hamming class, and hence to find the equilibria it is per-
fectly valid to “presymmetrize” the population distribution
and study the resulting dynamics.

Thus, when studying dynamics, it is generally not valid to
neglect backmutations. For example, consider a single-
fitness-peak landscape, and suppose that a population of or-
ganisms is at its equilibrium, clustered about the fitness peak.
If the organisms are then mutated, so that they are shifted
away from the fitness peak, then eventually they will back-
mutate and reequilibrate on the fitness peak(this situation
has been observed with prokaryotes[27]). If we imagine that
the mutation shifts the organism from the master genomes0
to some other genomes8Þs0, then it is clear that the land-
scape is not symmetric abouts8, and furthermore that the
population distribution is not symmetric abouts0. Thus, Eq.
(11) does not apply. To correctly model the reequilibration
dynamics, it is necessary to consider the finite sequence
length equations, and explicitly incorporate backmutations.

B. Reduced equations

Because of the neglect of backmutations, Eq.(11) may in
principle be solved recursively to obtain the equilibrium dis-
tribution of the zl1,. . .,lN

at any m, assuming we know the
equilibrium mean fitness, denotedk̄st=`d. The problem, of
course, is thatk̄st=`d needs to be computed. This may be
done as follows. Given any collectionhi1, . . . ,inj# h1, . . . ,Nj
of indices, definez̃hi1,. . .,inj via

z̃hi1,. . .,inj = o
l i1

=1

`

¯ o
l in

=1

`

zli1
ei1

+¯+l in
ein

, s12d

where e1=s1,0, . . . ,0d, e2=s0,1,0, . . . ,0d, and so forth.
Thus,z̃hi1,. . .,inj is simply the total fraction of the population in
which the genes of indiceshi1, . . . ,inj are faulty, while the
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remaining genes are given by their corresponding master se-
quences.

The dynamics of thez̃hi1,. . .,inj is derived in Appendix A.
The result is given by

dz̃hi1,. . .,inj

dt
= skhi1,. . .,inje

−s1−ai1
−. . .−ain

dm − k̄stddz̃hi1,. . .,inj

+ e−s1−ai1
−. . .−ain

dmo
k=0

n−1

o
h j1,. . .,jkj,hi1,. . .,inj

3kh j1,. . .,jkjz̃h j1,. . .,jkj p
i[hi1,. . .,inj/h j1,. . .,jkj

s1 − e−aimd.

s13d

We can provide an intuitive explanation for this expression.
Because backmutations may be neglected in the limit of in-
finite sequence length, it follows that, once a gene is dis-
abled, it remains disabled. Therefore, given a set of indices
hi1, . . . ,inj, mutational flow can occur only fromz̃hi1,. . .,inj to
z̃h j1,. . .,jmj for which hi1, . . . ,inj# h j1, . . . ,jmj. (In this paper, if
V1,V2, thenV1 is a proper subset ofV2. If V1#V2, then
either V1 is a proper subset ofV2 or V1=V2.) Similarly,
z̃hi1,. . .,inj can receive mutational contributions only from
z̃h j1,. . .,jmj for which h j1, . . . ,jmj# hi1, . . . ,inj. For such a
h j1, . . . ,jmj, the probability of mutation tohi1, . . . ,inj may be
computed as follows. Because the genes corresponding to the
indices j1, . . . ,jm remain faulty, the neglect of backmutations
means that it does not matter whether these genes are repli-
cated correctly or not. All genes with indices in
h1, . . . ,Nj / hi1, . . . ,inj must remain equal to the correspond-
ing master sequences after mutation. The probability that
genei replicates correctly is given bye−aim, so the probabil-
ity that all genes with indices inh1, . . . ,Nj / hi1, . . . ,inj repli-
cate correctly ispi[h1,. . .,Nj/hi1,. . .,inj e−aim=e−s1−ai1

−. . .−ain
dm. The

genes which must be replicated incorrectly are those with
indices inhi1, . . . ,inj / h j1, . . . ,jmj. Since each such gene rep-
licates incorrectly with probability 1−e−aim, it follows that
the probability of replicating all genes in
hi1, . . . ,inj / h j1, . . . ,jmj incorrectly is pi[hi1,. . .,inj/h j1,. . .,jmj s1
−e−aimd. Putting everything together, we obtain a mutational
flow from z̃h j1,. . .,jmj to z̃hi1,. . .,inj of
e−s1−ai1

−. . .−ain
dmkh j1,. . .,jmjz̃h j1,. . .,jmjpi[hi1,. . .,inj/h j1,. . .,jmjs1−e−aimd.

Summing over all possibleh j1, . . . ,jmj# hi1, . . . ,inj gives us
the expression in Eq.(13).

Note thatk̄std=on=0
N ohi1,. . .,injkhi1,. . .,injz̃hi1,. . .,inj, so we need

to solve Eq.(13) in order to obtain the equilibrium distribu-
tion of the model.

III. SOLUTION OF THE MODEL

In this section, we proceed to solve the reduced system of
equations given by Eq.(13). Since this provides us with
k̄st=`d and z0,. . .,0= z̃x, it follows that we can recursively
solve for the equilibrium values of allzl1,. . .,lN

.
In vector notation, Eq.(13) may be expressed in the form,

dz̃W

dt
= Bz̃W − skW · z̃Wdz̃W, s14d

where z̃W is the vector of allz̃hi1,. . .,inj, kW is the vector of all
khi1,. . .,inj, andB is the matrix of mutation rate constants.

Because of the neglect of backmutations in the limit
of infinite sequence length, different regions of the genome
space become mutationally decoupled, so that the largest
eigenvalue of the mutation matrixB will in general be de-
generate. Thus, the equilibrium of the reduced system of
equations is not unique. However, for any initial condition,
the system will evolve to an equilibrium, though of course
different initial conditions will yield different equilibrium re-
sults.

A. Definitions

In this subsection, we define a variety of constructs which
we will need to characterize the equilibrium behavior of our
model. We begin with the definition of anode: We define a
level-n node to refer to any collection of “knocked out”
genes with indiceshi1, . . . ,inj# h1, . . . ,Nj. The reason for
this terminology is simple. We may imagine the set of all
nodes to be connected via mutations. Because of the neglect
of backmutations, it follows that a nodehi1, . . . ,inj is acces-
sible from a nodeh j1, . . . ,jmj via mutations if and only if
h j1, . . . ,jmj# hi1, . . . ,inj. The result is that we can generate a
directed graph of mutational flows between nodes, an ex-
ample of which is illustrated in Fig. 1.

Given some node n=hi1, . . . ,inj, define Gn

;hñ# h1, . . . ,Nj un# ñj. Therefore,Gn may be regarded as
the subgraph of all nodes which are mutationally accessible
from n. An example of such a subgraph is illustrated in Fig.
2.

Let V denote any collection of nodes. Then we may de-

fine GV;øn[VGn. Furthermore, defineṼ=hn[V uVùGn

=nj. Thus,Ṽ is the set of all nodes inV such that no node in
V is contained within the mutational subgraph of any other

node inṼ. Figure 3 gives an example showing the construc-

tion of Ṽ from V.
Given some nodehi1, . . . ,inj, define keffshi1, . . . ,inj ;md

=khi1,. . .,inje
−s1−ai1

−¯−ain
dm. We then define kmaxsmd

=maxhkeffsn ;md un# h1, . . . ,Njj. Finally, given somem, de-
fine Vmaxsmd=hn# h1, . . . ,Nj ukeffsn ;md=kmaxsmdj.

FIG. 1. The directed graph of mutational flow between nodes for
a three-gene network.
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B. A simple example

With the basic definitions in place, we now illustrate the
equilibrium behavior of a simple two-gene “network” as a
numerical example. This should serve as a convenient refer-
ence point to aid in following the development of the equi-
librium behavior of the fullN-gene model.

We assume a genome containing two identical genes, so
that a1=a2=1/2, and wechoose the following growth pa-
rameters:kx=10, kh1j=kh2j=5, andkh1,2j=1.

With these parameters, the system exhibits two localiza-
tion to delocalization transitions. First, form[ f0,2 ln 2d we

haveṼmaxsmd=x. For m[ s2 ln 2,2 ln 5d we haveṼmaxsmd
=hh1j ,h2jj. The error catastrophe occurs atm=2 ln 5.

We determined the equilibrium behavior of the model by
solving the finite sequence length equations forL=40 and
S=2. The details may be found in Appendix C. Figure 4
shows a plot ofk̄st=`d from the simulation results and from
our theory. Figure 5 shows plots ofz̃x, z̃h1j, z̃h2j, and z̃h1,2j
from the simulation results and from theory.

With these definitions and the reference example in hand,
we are now ready to develop the structure of the equilibrium
solution at a givenm.

C. Equilibrium solution

1. Determination ofk̄„t=`…

We claim that k̄st=`d=kmaxsmd. We prove this in two
steps. First of all, we claim thatk̄st=`d=keffsn ;md for some
node n. Clearly, becauseon#h1,. . .,Njz̃n=1, it follows that at

least one of thez̃n.0 at equilibrium. Letn8=hi1, . . . ,inj be a
node of minimaln such thatz̃n8.0. Then it should be clear
that, at equilibrium, we have

0 =Udz̃n8

dt
U

t=`

= fkeffsn8;md − k̄st = `dgz̃n8, s15d

which, since z̃n8.0, may be solved to givek̄st=`d
=keffsn8 ;md.

So now suppose thatk̄st=`dÞkmaxsmd. Then k̄st
=`d,kmaxsmd. Such an equilibrium can never be observed
because it is unstable. To see this, letnmax denote a node for
which keffsnmax;md=kmaxsmd. Then from Eq.(13) we have,
at equilibrium, that,

0 =Udz̃nmax

dt
U

t=`

ù fkeffsnmax;md − k̄st = `dgz̃nmax
, s16d

and so,z̃nmax
=0. Clearly, however, any perturbation onz̃nmax

will push z̃nmax
away from its equilibrium value. This equi-

FIG. 2. The mutational subgraphGh1,3j for a four-gene
network.

FIG. 3. Illustration ofV and Ṽ in a four-gene network. The
nodes circled with rectangles and circles constituteV. The nodes

circled only with rectangles constituteṼ.

FIG. 4. Plot ofk̄st=`d from both simulation and theory.

FIG. 5. Plots ofz̃x, z̃h1j, z̃h2j, andz̃h1,2j from both simulation and

theory. By symmetry,wh1j=wh2j=1/2 whenṼmaxsmd=hh1j ,h2jj.
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librium is therefore unstable, and hence unobservable.
Note that sincek̄st=`d=kmaxsmd, it follows that the mean

equilibrium fitness is a continuous function ofm.

2. Determining the z˜
ˆi1,. . .,in‰

To find the equilibrium solution of the reduced system of
equations, we first need to determine whichz̃n=0 at equilib-
rium. To this end, we begin with the claim that, form.0,
z̃n=0 unless n[GṼmaxsmd. For suppose there exists
n¹GṼmaxsmd such thatz̃nÞ0 at equilibrium. Then out of the
set of all nodes which satisfy the above two properties, we
may choosen to be of minimal level. We claim that, for any
ñ#n, we have thatñ¹GṼmaxsmd, for otherwise it is clear that
n[Gñ#GṼmaxsmd⇒⇐. Therefore, by the minimality of the
level of n, it follows that z̃ñ=0 wheneverñ is a proper subset
of n. But then the equilibrium equation forz̃n gives k̄st=`d
=keffsn ;md, and so keffsn ;md=kmaxsmd. Therefore,

n[Vmaxsmd. However, by assumption,n¹Ṽmaxsmd, which
means thatGn contains nodes inVmaxsmd which are distinct
from n. Denote one of these nodes byñ=h j1, . . . ,jmj. Then at
equilibrium we have, from Eq.(13), that

Udz̃ñ

dt
U

t=`

= fkmaxsmd − kmaxsmdgz̃ñ + e−s1−a j1
−¯−a jm

dmo
k=0

m−1

o
n8,ñ

3 kn8z̃n8 p
i[ñ/n8

s1 − e−aimd

ùe−s1−a j1
−¯−a jm

dmknz̃n p
i[ñ/n

s1 − e−aimd . 0, s17d

which is clearly a contradiction. This establishes our claim.
We now argue that our equilibrium solution may be found

if we know z̃n for n[Ṽmaxsmd. We claim that for any
n[GṼmaxsmd we may write

z̃n = o
ñ[Ṽmaxsmd

bñnsmdz̃ñ, s18d

where thebñnù0, and form.0 a givenbñn is strictly posi-
tive if and only if n[Gñ. The above expression then holds
for all n, since we simply takebñn=0 for n¹GṼmaxsmd.

We can prove the above formula via induction on the
level of the nodes inGṼmaxsmd. In doing so, we will essen-
tially develop an algorithm for constructing thebñn. So, let
us start withnmin, the minimal level nodesGṼmaxsmd. Then

clearly n[Ṽmaxsmd, so thatbñn=dñn; hence the formula is
correct fornmin. So now suppose that, for somenùnmin, the
formula is correct for allm such thatnminømøn. Then for a
level n+1 node in GṼmaxsmd, denoted byhi1, . . . ,in+1j, we
have, at equilibrium, that

0 = fkeffshi1, . . . ,in+1j;md − kmaxsmdgz̃hi1,. . .,in+1j

+ e−s1−ai1
−. . .−ain+1

dmo
k=0

n

o
h j1,. . .,jkj,hi1,. . .,in+1j

3 kh j1,. . .,jkjz̃h j1,. . .,jkj p
i[hi1,. . .,in+1j/h j1,. . .,jkj

s1 − e−aimd

= fkeffshi1, . . .... ,in+1j;md − kmaxsmdgz̃hi1,. . ....,in+1j

+ e−s1−ai1
−. . ....−ain+1

dm o
n,hi1,. . ....,in+1j,n[GṼmaxsmd

kn o
ñ[Ṽmaxsmd

3 bñnz̃ñ p
i[hi1,. . ....,in+1j/n

s1 − e−aimd

= fkeffshi1, . . .... ,in+1j;md − kmaxsmdgz̃hi1,. . ....,in+1j

+ e−s1−ai1
−. . ....−ain+1

dm o
ñ[Ṽmaxsmd

z̃ñ o
n,hi1,. . ....,in+1j,n[Gñ

3 bñnkn p
i[hi1,. . ....,in+1j/n

s1 − e−aimd. s19d

Now, if hi1, . . . ,in+1j[Ṽmaxsmd, then bñhi1,. . .,in+1j
=dñhi1,. . .,in+1j. Otherwise,keffshi1, . . . ,in+1j ;md,kmaxsmd, so
the equilibrium equation may be solved to give,

bñhi1,. . .,in+1j =
e−s1−ai1

−. . .−ain+1
dm

kmaxsmd − keffshi1, . . . ,in+1j;md

3 o
n,hi1,. . .,in+1j,n[Gñ

bñnkn

3 p
i[hi1,. . .,in+1j/n

s1 − e−aimd. s20d

Note thatbñhi1,. . .,in+1jù0. Furthermore, ifhi1, . . . ,in+1j¹Gñ,
then no proper subset ofhi1, . . . ,in+1j is in Gñ. Therefore,
hn, hi1, . . . ,in+1j un[Gñj=x, so bñhi1,. . .,in+1j=0. Conversely,
if hi1, . . . ,in+1j[Gñ, then sincehi1, . . . ,in+1jÞ ñ, it follows
thathn, hi1, . . . ,in+1j un[GñjÞx. Therefore, the sum in Eq.
(20) is nonempty; hence, since thebñn appearing in the sum
are all strictly positive, it follows thatbñhi1,. . .,in+1j.0. This
implies that bñhi1,. . .,in+1j is strictly positive if and only if
hi1, . . . ,in+1j[Gñ, which completes the induction step, and
proves the claim.

For eachñ[Ṽmaxsmd, we can definepñ=on[Gñ
bñn, and

then definegñn=bñn /pñ andwñ=pñnz̃ñ. If, for eachñ we also
definegW ñ=sgñnd, that is, the vector of allgñn, and if we define

z̃W=sz̃nd, then we obtain

z̃W = o
ñ[Ṽmaxsmd

wñgW ñ, s21d

whereoñ[Ṽmaxsmdwñ=1.
Note that thegW ñ form a linearly independent set of vec-

tors. Therefore, ifṼmaxsmd contains more than one node,
then the equilibrium solution of the reduced system of equa-
tions is not unique, but rather is defined by the set
hoñ[ṼmaxsmdwñgW ñ uoñ[Ṽmaxsmdwñ=1,wñù0j.

As mentioned earlier, the degeneracy in the equilibrium
behavior follows from the neglect of backmutations in the
limit of infinite sequence length. The various nodes in

Ṽmaxsmd become mutationally decoupled in this limit, which
can cause the largest eigenvalue of the mutation matrixB to
be degenerate. However, forfinite sequence lengths, the qua-
sispecies dynamics will always converge to a unique solu-
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tion. In particular, if we start with the initial conditionzx
=1, then for finite sequence lengths we will converge to the
unique equilibrium solution. Because all nodes are mutation-
ally connected in the infinite sequence length limit with this
initial condition, we make the assumption that the way to
find the infinite sequence length equilibrium which is the
limit of the finite sequence length equilibria is to find the
infinite sequence length equilibrium starting from the initial
condition zx=1. This allows us to break the eigenstate de-
generacy in a canonical manner.

In the appendices, we describe a fixed-point iteration ap-
proach for finding the equilibrium solution of the model.
Within this algorithm, we also use the initial conditionzx
=1 as the analogous approach to the one above for finding
the infinite sequence length equilibrium which is the limit of
the finite sequence length equilibria.

Finally, the treatment thus far has been finding the equi-
librium solution of the reduced system of equations for
m.0. The equilibrium solution form=0 is obtained by tak-

ing the limit of the m.0 solutions, so thatz̃Wsm=0d
=limm→0+z̃Wsmd.

3. Construction of the phase diagram

From the previous development it is clear that the nodes

in Ṽmaxsmd may be regarded as “source” nodes which dictate
the solution. To understand how the solution changes withm,

we therefore need to determine howṼmaxsmd depends onm.
We claim the following: That there exist a finite number

of m, which we denote by m1, . . . ,mN, where
0øm1, ¯ ,mN,`, for which hskhi1,. . .,inj ,ai1

+¯

+ain
d u hi1, . . . ,inj[Vmaxsmdj contains distinct elements. In

any intervalsmi−1,mid, Vmaxsmd is constant, and may there-
fore be denoted byVi. The Vi are all disjoint, and
Vi øVi+1#Vmaxsmid.

We begin proving this claim by introducing one more
definition. Let SÞ denote the set of all sets of nodes, such
that a collection of nodesV is a member ofSÞ if and only if
hskhi1,. . .,inj ,ai1

+¯ +ain
d u hi1, . . . ,inj[Vj contains distinct

elements.
Note that since there are 2N nodes, there are 22N

sets
of nodes; henceSÞ consists of a finite number of elements.
Given some VÞ[SÞ, we claim that Vmaxsmd=VÞ

for at most onem. To show this, suppose that there exist
m1,m2 for which Vmaxsm1d=Vmaxsm2d=VÞ. Choose any
two nodes hi1, . . . ,inj, h j1, . . . ,jmj in VÞ, and note that
khi1,. . .,inje

−s1−ai1
−¯−ain

dm1=kh j1,. . .,jmje
−s1−a j1

−¯−a jm
dm1=kmaxsm1d,

and similarly for m2. However, a1e
−b1x=a2e

−b2x and
a1e

−b1y=a2e
−b2y implies that e−b1sy−xd=e−b2sy−xd, so that

b1=b2 and hence a1=a2. Therefore, khi1,. . .,inj=kh j1,. . .,jmj
and ai1

+¯ +ain
=a j1

+¯ +a jm
, so hskhi1,. . .,inj ,ai1

+¯

+ain
d u hi1, . . . ,inj[VÞj does not contain distinct elements.

Because this contradicts our assumption aboutVÞ, it follows
that Vmaxsmd=VÞ for at most onem.

So, sinceSÞ contains a finite number of elements, it fol-
lows that there are a finite number ofm for which Vmaxsmd
satisfies the property that hskhi1,. . .,inj ,ai1

+¯

+ain
d u hi1, . . .... ,inj[Vmaxsmdj contains distinct elements.

We can denote thesem by m1, . . . ,mN, where we assume that
0øm1, ¯ ,mN,`.

Note that if a collection of nodesV has the property that
ṼÞV, then V must be a collection inSÞ. This is easy to
see: V contains somehi1, . . . ,inj for which there exists a
distinct h j1, . . . ,jmj[V whereh j1, . . . ,jmj[Ghi1,. . .,inj. There-
fore ai1

+¯ +ain
,a j1

+¯ +a jm
, which proves our conten-

tion.
We now prove thatVmaxsmd is some constant, which we

denote byVi, oversmi−1,mid. Given somem0[ smi−1,mid, let
m+=suphm̃[ sm0,mid uVmaxsmd=Vmaxsm0d∀m[ sm0,m̃dj.
[sup stands for “supremum,” which is the least upper bound
of a set of real numbers. IfS is a set of real numbers with an
upper bound, thenA;supS exists, and satisfies the follow-
ing properties.(1) A is an upper bound forS. (2) If B is any
upper bound ofS, thenAøB. (2) If B,A, then there exists
at least one element ofS which exceedsB.] Clearly, m+
ømi. We claim thatm+=mi. To show this, note first of all that
Vmaxsmd=Vmaxsm0d for all m[ sm0,m+d, and that for any
m̃.m+, there exists m[ fm+,m̃d such that Vmaxsmd
ÞVmaxsm0d. For, given anym8[ sm0,m+d, we have, by defi-
nition of sup, that there exists somem̃[ sm8 ,m+d such that
Vmaxsmd=Vmaxsm0d for all m[ sm0,m̃d. In particular, this im-
plies thatVmaxsm8d=Vmaxsm0d. Furthermore, if there exists
m̃.m+ for which Vmaxsmd=Vmaxsm0d for all m[ fm+,m̃d,
then Vmaxsmd=Vmaxsm0d for all m[ sm0,m̃d, contradicting
the definition ofm+.

Now, suppose Vmaxsm+d¹SÞ. Then we can write
khi1,. . .,inj=k+ and ai1

+¯ +ain
=a+ for all

hi1, . . . ,inj[Vmaxsm+d. Then sincekmaxsm+d=k+e−s1−a+dm+, it
follows by continuity that k+e−s1−a+dm.keffsn ;md for
n¹Vmaxsm+d in some neighborhoodsm+−d ,m++dd. But this
implies thatVmaxsmd=Vmaxsm+d over sm+−d ,m++dd. Since
Vmaxsm0d=Vmaxsmd over sm+−d ,m+d, we obtain that
Vmaxsmd=Vmaxsm0d over sm0,m++dd, contradicting the defi-
nition of m+.

We have just shown thatVmaxsm+d[SÞ. Since
Vmaxsmd¹SÞ over smi−1,mid, we must have thatm+=mi. Us-
ing a similar argument with inf, we can show thatVmaxsmd
=Vmaxsm0d over smi−1,m0d, and soVmaxsmd is constant on
smi−1,mid. (inf stands for “infimum,” and is defined as the
greatest lower bound of a set of real numbers. It satisfies
properties analogous to those of sup.)

Suppose for twoi , j with i , j , we haveVi and V j that
are not disjoint. Then they share at least one node, and so,
by the nature of the two sets, we must have thatVi =V j.
Define k to be khi1,. . .,inj for any node inVi, V j, and a

to be ai1
+¯ +ain

. Now, Vmaxsmid contains some node
hi1, . . . ,inj¹Vi such thatkeffshi1, . . . ,inj ;md,ke−s1−adm for
m in smi−1,midø sm j−1,m jd. But if for x1,x2 we
have that a1e

−b1x1,a2e
−b2x1 and a1e

−b1x2,a2e
−b2x2,

then sa1/a2de−sb1−b2dx1,1 and sa1/a2de−sb1−b2dx2,1.
Since sa1/a2de−sb1−b2dx is monotone decreasing or
increasing, it follows thatsa1/a2de−sb1−b2dx,1 on sx1,x2d,
or equivalently a1e

−b1x,a2e
−b2x. Therefore, kmaxsmid

=keffshi1, . . . ,inj ;mid,ke−s1−admi ⇒⇐. The Vi are thus all
disjoint, as claimed.
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Finally, since kmaxsmd is continuous, we have that
limm→mi

−kmaxsmd=kmaxsmid. If n[Vi, then this gives
kmaxsmid=keffsn ;mid. Similarly, considering limm→mi

+kmaxsmd
gives thatkmaxsmid=keffsn ;mid for n[Vi+1. Therefore,Vi,
Vi+1#Vmaxsmid, so Vi øVi+1#Vmaxsmid, as claimed.

The variousVi may therefore be regarded as defining dif-
ferent “phases” in the equilibrium behavior of the model.
Physically, each “phase” is defined by a set of “source
nodes,” which dictate which genes in the genome are
knocked out, and which are not. The transition fromVi to
Vi+1 corresponds to certain genes in the genome becoming
knocked out, and perhaps other genes becoming viable
again. This transition can happen more than once, and so we
refer to the series ofVi →Vi+1 transitions as an “error cas-
cade.”

Becausekeffsh1, . . . ,Nj ;md=1, for sufficiently largem,
keffsh1, . . . ,Nj ;md.keffsn ;md for any nÞ h1, . . . ,Nj. There-
fore, for sufficiently largem, Vmaxsmd=hh1, . . . ,Njj. Since
Vmaxsmd is constant onsmN,`d, it follows that Vmaxsmd
={h1, . . . ,Nj} on smN,`d. Thus, the final transition fromVN

to VN+1 corresponds to delocalization over the entire genome
space, which is simply the error catastrophe.

4. Finding the zl1,. . .,lN

Once we have determinedk̄st=`d, we can in principle
obtain the population fractionszl1,. . .,lN

in the various Ham-
ming classes. The problem is that, ifzx=0, then for anyfinite
values ofl1, . . . ,ln, we get thatzl1,. . .,lN

=0. To show this, sup-
pose we can findl1, . . . ,lN such thatzl1,. . .,lN

.0 at equilib-
rium. Of the l1, . . . ,lN for which zl1,. . .,lN

.0, choose a set of
indicesl18 , . . . ,lN8 such thatl18+¯ + lN8 is as small as possible.
Note that if zl1,. . .,lN

=zl18−l19,. . .,lN8−lN9
, with sl19 , . . . ,lN9 d

Þ s0, . . . ,0d, thenzl1,. . .,lN
=0.

Now, let the nonzerol i8 be denoted byl i18 , . . . ,l in8 . Then
kl18,. . .,lN8

=khi1,. . .,inj, and we have, from Eq.(11), that, at equi-
librium,

0 =Udzl18,. . .,lN8

dt
U

t=`

= fkhi1,. . .,inje
−m − k̄st = `dgzl18,. . .,lN8

,

s22d

which gives k̄st=`d=khi1,. . .,inje
−m. But k̄st=`d

ùkhi1,. . .,inje
−s1−ai1

−¯−ain
dm. Therefore, e−mùe−s1−ai1

−¯−ain
dm,

and so ai1
+¯ +ain

=0; hence n=0. But then zl18,. . .,lN8
=zx.0⇒⇐. This proves our claim.

If Ṽmaxsmd=x, then the above claim does not present us
with any problem. We can simply recursively solve Eq.(11)
at equilibrium for all thezl1,. . .,lN

. But once any delocalization
occurs, it is impossible to solve for the equilibrium distribu-
tion in terms of the Hamming classes. However, we
can recursively obtain the distribution of another
class of population fractions, as follows: Given some
collection of indices hi1, . . . ,inj, another collection
of indicesh j1, . . . ,jkj# hi1, . . . ,inj, and a collection of Ham-

ming distancesl1, . . . ,lN, we define z̃h j1,. . .,jkjslWhi1,. . .,injd and

zh j1,. . .,jkjslWhi1,. . .,injd as

z̃h j1,. . .,ikjslWhi1,. . .,injd

= o
l j1

=1

`

¯ o
l jk

=1

`

zl j1
ej1

+. . .+l jk
ejk

+oi[h1,. . .,Nj/hi1,. . .,injl iei
,

zh j1,. . .,jkjslWhi1,. . .,injd

= o
l j1

=0

`

¯ o
l jk

=0

`

zl j1
ej1

+. . .+l jk
ejk

+oi[h1,. . .,Nj/hi1,. . .,injl iei
. s23d

It is possible to show that

zh j1,. . .,jkjslWhi1,. . .,injd = o
l=0

k

o
h j18,. . .,j l8j#h j1,. . .,jkj

z̃h j18,. . .,j l8jslWhi1,. . .,injd,

s24d

and hence, that

z̃h j1,. . .,jkjslWhi1,. . .,injd

= o
l=0

k

s− 1dk−l o
h j18,. . .,j l8j#h j1,. . .,jkj

zh j18,. . .,j l8jslWhi1,. . .,injd.

s25d

We may then derive the expression fordz̃hi1,. . .,inj

slWhi1,. . .,injd /dt. Since the derivation uses techniques similar to
those used in Appendixes A and B, we simply state the final
result, which is

dz̃hi1,. . .,injslWhi1,. . .,injd

dt
= e−s1−ai1

−. . .−ain
dmo

k=0

n

o
h j1,. . .,jkj#hi1,. . .,inj

3o
l i8=0

i[h1,. . .,Nj/hi1,. . .,inj

l i

p
i[h1,. . .,Nj/hi1,. . .,inj

saimdl i8

l i8!

3 P j[hi1,. . .,inj/h j1,. . .,jkjs1 − e−a jmd

3 kh j1,. . .,jkj

3slWhi1,. . .,inj − lWhi1,. . .,inj8 d

3z̃h j1,. . .,jkjslWhi1,. . .,inj − lWhi1,. . .,inj8 d

− k̄stdz̃hi1,. . .,injslWhi1,. . .,injd, s26d

wherekh j1,. . .,jkjslWhi1,. . .,injd=kh j1,. . .,jkjøh j18,. . .,j l8j, whereh j18 , . . . ,j l8j

are the indices of the nonzero Hamming distances inlWhi1,. . .,inj.

We claim that, at equilibrium,z̃nslWnd.0 only if n[Gñ for

someñ[Ṽmaxsmd for which z̃ñ.0. For, if z̃nslWnd.0, let ñ
=hi1, . . . ,inj#n be a node of minimal level for which there

exists lWñ such that z̃ñslWñd.0. Note then that for any
proper subseth j1, . . . ,jkj, hi1, . . . ,inj, we must have that

z̃h j1,. . .,jkjslWhi1,. . .,injd=0. This implies that, at equilibrium,
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0 =
dz̃hi1,. . .,injslWhi1,. . .,injd

dt
= e−s1−ai1

−¯−ain
dm

3 o
l i8=0

i[h1,. . .,Nj/hi1,. . .,inj

l i

p
i[h1,. . .,Nj/hi1,. . .,inj

saimdl i8

l i8!

3 khi1,. . .,injslWhi1,. . .,inj − lWhi1,. . .,inj8 d

3z̃hi1,. . .,injslWhi1,. . .,inj − lWhi1,. . .,inj8 d

− k̄st = `dz̃hi1,. . .,injslWhi1,. . .,injd. s27d

Among all lWhi1,. . .,inj for which z̃hi1,. . .,injslWhi1,. . .,injd.0, there ex-

ists anlWhi1,. . .,inj9 such thatoi[h1,. . .,Nj/hi1,. . .,injl i9 is minimal. Then

we obtain

0 =Udz̃hi1,. . .,injslWhi1,. . .,inj9 d

dt
U

t=`

= fkhi1,. . .,injslWhi1,. . .,inj9 de−s1−ai1
−. . .−ain

dm − k̄stdg

3 z̃hi1,. . .,injslWhi1,. . .,inj9 d, s28d

which givesk̄st=`d=khi1,. . .,injslWhi1,. . .,inj9 de−s1−ai1
−¯−ain

dm. Now,

let i18 , . . . ,im8 denote the indices of the nonzero Hamming dis-

tances inlWhi1,. . .,inj. Thenkhi1,. . .,inj=khi1,. . .,injøhi18,. . .,im8 j. But since
k̄st=`dùkhi1,. . .,injøhi18,. . .,im8 je

−s1−ai1
−¯−ain

−ai18
−¯−aim8

dm, we get
ai18

+¯ +aim8
=0, so m=0. Thereforek̄st=`d=keffsñ ;md, so

sincez̃ñ.0, we haveñ[Ṽmaxsmd.
The z̃nslWnd may be obtained recursively from Eq.(27),

starting with the values ofz̃n for n[Ṽmaxsmd. The idea is

that, starting with the values ofz̃n for n[Ṽmaxsmd, we may

computez̃nslWnd recursively. We then proceed down the levels,

computing thez̃nslWnd using the values ofz̃nslWn− lWn8d and z̃ñslWñd
for ñ,n. Note then that instead of computing thezl1,. . .,lN

,
which will be 0 as soon as any delocalization occurs, we first
sum over a set of gene indices containing the delocalized
genes as a subset, and only compute the population distribu-
tion for finite Hamming distances of the localized genes.

D. Localization lengths

In this subsection, we compute various localization
lengths associated with the population distribution. Specifi-
cally, given a nodehi1, . . . ,inj, and somei ¹ hi1, . . . ,inj, we

define two localization lengths,kl ilhi1,. . .,inj and kl̃ ilhi1,. . .,inj, as
follows:

kl ilhi1,. . .,inj ; o
l i1

=0

`

· . . . ¯ o
l in

=0

`

o
l i=1

`

l izli1
ei1

+¯+l in
ein

+l iei
,

s29d

kl̃ ilhi1,. . .,inj ; o
l i1

=1

`

¯ o
l in

=1

`

o
l i=1

`

l izli1
ei1

+¯+l in
ein

+l iei
. s30d

Note that

kl ilhi1,. . .,inj = o
k=0

n

o
h j1,¯,jkj#hi1,¯,inj

kl̃ ilh j1,. . .,jkj, s31d

and so, in analogy withzhi1,. . .,inj and z̃hi1,. . .,inj, we have that

kl̃ ilhi1,. . .,inj = o
k=0

n

s− 1dn−k o
h j1,. . .,jkj#hi1,. . .,inj

kl ilh j1,. . .,jkj. s32d

We also define the localization lengthkl il by

kl il = o
l1=0

`

¯ o
lN=0

`

l izl1,. . .,lN
. s33d

Note that kl il=kl ilh1,. . .,Nj/hij=on=0
N−1ohi1,. . .,inj#h1,. . .,Nj/hij

3kl̃ ilhi1,. . .,inj, and so is finite if and only if all thekl̃ ilhi1,. . .,inj
are finite.

We can computekl̃ ilhi1,. . .,inj at equilibrium by finding the
time derivative and setting it to 0. In Appendix B we show
that

dkl̃ ilhi1,. . .,inj

dt
= skeffshi1, ¯ ,in,ij;md − k̄stddkl̃ ilhi1,. . .,inj

+ aime−s1−ai1
−¯−ain

−aidmskhi1,. . .,injz̃hi1,. . .,inj

+ khi1,. . .,in,ijz̃hi1,. . .,in,ijd + e−s1−ai1
−¯−ain

−aidm

3o
k=0

n−1

o
h j1,. . .,jkj,hi1,. . .,inj

skh j1,. . .,jk,ij
kl̃ ilh j1,. . .,jkj

+ aimkh j1,. . .,jkjz̃h j1,. . .,jkj + aimkh j1,. . .,jk,ij
z̃h j1,. . .,jk,ij

d

3 p
j[hi1,. . .,inj/h j1,. . .,jkj

s1 − e−a jmd. s34d

Therefore, at equilibrium, we get
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kl̃ ilhi1,. . .,inj = aim
e−s1−ai1

−¯−ain
−aidm

k̄st = `d − keffshi1, . . . ,in,ij;md

3skhi1,. . .,injz̃hi1,. . .,inj + khi1,. . .,in,ijz̃hi1,. . .,in,ijd

+
e−s1−ai1

−¯−ain
−aidm

k̄st = `d − keffshi1, . . . ,in,ij;md

3o
k=0

n−1

o
h j1,. . .,jkj,hi1,. . .,inj

skh j1,. . .,jk,ij
kl̃ ilh j1,. . .,jkj

+ aimkh j1,. . .,jkjz̃h j1,. . .,jkj

+ aimkh j1,. . .,jk,ij
z̃h j1,. . .,jk,ij

d

3 p
j[hi1,. . .,inj/h j1,. . .,jkj

s1 − e−a jmd. s35d

We can characterize the behavior of thekl̃ ilhi1,. . .,inj. First of

all, we claim thatkl̃ ilhi1,. . .,inj=0 if and only if z̃hi1,. . .,in,ij=0.

Second, we claim thatkl̃ ilhi1,. . .,inj=` if and only if

h j1, . . . ,jk, ij[Ṽmaxsmd with z̃h j1,. . .,jk,ij
.0 for some

h j1, . . . ,jkj# hi1, . . . ,inj.
To show this, note first of all that, from physical consid-

erations,kl̃ ilhi1,. . .,inj=0 if z̃hi1,. . .,in,ij=0. If z̃hi1,. . .,in,ij.0, then
hi1, . . . ,in, ij[GṼmaxsmd, and so, since k̄st=`d

ùkeffshi1, . . . ,inj ;md, it follows that kl̃ ilhi1,. . .,inj.0. This es-
tablishes the first part of our claim.

So now suppose thath j1, . . . ,jk, ij[Ṽmaxsmd, with
z̃h j1,. . .,jk,ij

.0 for some h j1, . . . ,jkj# hi1, . . . ,inj. Then k̄st
=`d=keffsh j1, . . . ,jk, ij ;md, and so

kl̃ ilh j1,. . .,jkj = aim
e−s1−a j1

−¯−a jk
−aidm

k̄st = `d − keffsh j1, . . . ,jk,ij;md

3 kh j1,. . .,jk,ij
z̃h j1,. . .,jk,ij

= `, s36d

which of course implies thatkl̃ ilhi1,. . .,inj=`.

To prove the converse, let us suppose thatkl̃ ilhi1,. . .,inj=`.
Let us chooseh j1, . . . ,jkj# hi1, . . . ,inj to be the minimal level

subset for which kl̃ ilh j1,. . .,jkj=`. Then if k̄st
=`d.keffsh j1, . . . ,jk, ij ;md, it is clear from the expression

for dkl̃ ilh j1,. . .,jkj /dt that kl̃ ilh j18,. . .,j l8j=` for some
h j18 , . . . ,j l8j, h j1, . . . ,jkj, with 0ø l øk−1. But this contra-
dicts the minimality of k, hence k̄st=`d
=keffsh j1, . . . ,jk, ij ;md, so sincez̃h j1,. . .,jk,ij

.0 it follows that

h j1, . . . ,jk, ij[Ṽmaxsmd. This proves the converse, which es-
tablishes the second part of our claim.

IV. DISCUSSION

The first point to note about the solution of the quasispe-
cies equations for a gene network is that, unlike the single-
gene model, which exhibits a single “error catastrophe,” the
multiple-gene model exhibits a series of localization to delo-
calization transitions which we term an “error cascade.” The
reason for this is that, as the mutation rate is increased, the
selective advantage for maintaining functional copies of cer-
tain genes in the genome is no longer sufficiently strong to
localize the population distribution about the corresponding
master sequences, and delocalization occurs in the corre-
sponding sequence spaces.

The more a given gene or set of genes contributes to the
fitness of an organism, the largerm will have to be to induce
delocalization in the corresponding sequence spaces. Even-
tually, by makingm sufficiently large, the selective advan-
tage for maintaining any functional genes in the genome will
disappear, and the result is complete delocalization over all
sequence spaces, corresponding to the error catastrophe.

The prediction of an error cascade suggests an approach
for determining the selective advantage of maintaining cer-
tain genes in a genome. Currently, the standard method for
determining whether a gene is “essential” is by knocking it
out, and then seeing if the organism survives. By knocking
out each of the genes, one can construct a “deletion set” for
a given organism, consisting of the minimal set of genes
necessary for the organism to survive[28].

While knowledge of the deletion set of an organism is
important, it does not explain why the organism should
maintain functional copies of other, “nonessential” genes.
One possibility is that these “nonessential” genes do confer a
fitness advantage to the organism, however, the time scale on
which organisms are observed to grow during knockout ex-
periments is simply too short to resolve these fitness differ-
ences.

Thus, an alternative approach to the deletion set method is
to have organisms grow at various mutagen concentrations.
By determining which genes get knocked out at the corre-
sponding mutation rates, it is possible to determine the rela-
tive importance of various genes to the fitness of an organ-
ism. Such an experiment is likely to be difficult to perform.
Nevertheless, if successful, it would provide a considerably
more powerful approach than the deletion set method for
determining fitness advantages of various genes.

The results in this paper also shed light on a phenomenon
which Wilke termed the “survival of the flattest”[24].
Briefly, what Wilke (and others) showed was that at low
mutation rates, a population will localize in a region of se-
quence space which has high fitness. At higher mutation
rates, a population will relocalize in a region of sequence
space which may not have maximal fitness, but is mutation-
ally robust[24].

The error cascade is exactly a relocalization from a region
of high fitness but low mutational support to a region of
lower fitness but higher mutational support. The reason for
this is that the fitness landscape becomes progressively flatter
as more and more genes are knocked out, because the more
genes are knocked out, the smaller the fraction of the ge-
nome which is involved in determining the fitness of the
organism.
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This implies that an error cascade is necessary for the
“survival of the flattest” principle to hold. Robustness in this
sense is therefore conferred by modularity in the genome.
That is, robustness does not arise because an individual gene
may remain functional after several point mutations, but
rather arises from the fact that the organism can remain vi-
able even if entire regions(e.g., “genes”) of the genome are
knocked out. In fairness, it should be pointed out that the
idea that mutational robustness is conferred by modularity in
the genome has been discussed before[24,29], and the con-
cept of an “error cascade” has been hinted at[30,31].

To see this point more clearly, one can consider a “robust”
landscape in which the genome consists of a single gene.
However, unlike the single-fitness-peak landscape, the organ-
ism is viable out to some Hamming classlvia. Therefore, if
DHss ,s0d= l, thenks=1 if l . lvia; otherwiseks=kl, where
k0ùk1ù ¯ ùklvia

.1. Using techniques similar to the ones
used in this paper(neglect of backmutations and stability
criterion for equilibria), it is possible to show that the equi-
librium mean fitness is exactlyk0e

−m, unchanged from the
single-fitness-peak results. Thus, in contrast to robustness
studies which consider finite sequence lengths and do not
have a well-defined viability cutoff[32], in the limit of infi-
nite sequence length there is no selective advantage in hav-
ing a genome which can sustain a finite number of point
mutations and remain viable.

V. CONCLUSIONS

This paper developed an extension of the quasispecies
model for arbitrary gene networks. We considered the case of
conservative replication and a genome-independent replica-
tion error probability. We showed that, instead of a single
error catastrophe, the model exhibits a series of localization
to delocalization transitions, termed an “error cascade.”

While the numerical example we used in this paper was
relatively simple, it is possible to have nontrivial delocaliza-
tion behavior, depending on the choice of the landscape. For
example, it is possible that certain genes which are knocked
out in one phase can become reactivated again in the follow-
ing phase. That is, instead of a delocalization, one can have a
relocalization to source nodes not contained in the muta-
tional subgraphs of the source nodes in the previous phase.
The types of equilibrium behaviors possible is something
which will be explored in future research.

Future research also will involve incorporating more de-
tails to the multiple-gene model introduced in this paper. For
example, one extension is to move away from the “single-
fitness-peak” assumption for each gene. Another natural ex-
tension is to study the equilibrium behavior of the multiple-
gene quasispecies equations for the case of semiconservative
replication. While this is a subject for future work, we hy-
pothesize that many of the semiconservative results would be
essentially unchanged from the conservative ones. Thus, we
claim that at equilibrium, we would still have thatk̄st=`d
=kmaxsmd, only this timekeffsn ;md is computed by replacing
e−m with 2e−m/2−1. We also claim that we would still have

that Ṽmaxsmd define the “source” nodes of the equilibrium
solution. Indeed, we hypothesize that, for semiconservative
replication, Eq.(13) becomes

dz̃hi1,. . .,inj

dt
= fkeffshi1, . . . ,inj;md − k̄stdgz̃hi1,. . .,inj

+ 2e−s1−ai1
−. . .−ain

dm/2o
k=0

n−1

o
h j1,. . .,jkj,hi1,. . .,inj

3kh j1,. . .,jkjz̃h j1,. . .,jkj

3 p
i[hi1,. . .,inj/h j1,. . .,jkj

s1 − e−aim/2d. s37d

Another subject for future work is the incorporation of
repair into our network model. In[3,19] it was assumed that
only one gene controlled repair. By assuming that several
genes control repair, then, in analogy with fitness, we hy-
pothesize that instead of a single “repair catastrophe”[3,19],
we obtain a series of localization to delocalization transitions
over the repair gene sequence spaces, a “repair cascade.”

Finally, once we have incorporated a sufficient level of
detail into our multiple-gene model via the extensions de-
scribed above, we would like to simulate the equilibrium
evolutionary behavior of genomes from real organisms.
There has already been some experimental work onSaccha-
romyces cerevisiae[33] andEscherichia coli[34] relating to
correlated mutations and the influence of network topology
on fitness landscapes. While the genomes of these organisms
are likely too large for a direct simulation, if possible it
would be interesting to study the equilibrium behavior for
“subgenomes” corresponding to individual systems in the or-
ganisms.
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APPENDIX A: DERIVATION OF THE REDUCED SYSTEM
OF EQUATIONS

In this appendix, we derive Eq.(13) from Eq.(11). To this
end, define

zhi1,. . .,inj = o
l i1

=0

`

¯ o
l in

=0

`

zli1
ei1

+¯+l in
ein

. sA1d

We then have that
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dzhi1,. . .,inj

dt
= o

l i1
=0

`

¯ o
l in

=0

` Se−m o
l i1
8 =0

l i1

¯ o
l in
8 =0

l in ksl i1
−l i1

8 dei1
+¯+sl in

−l in
8 dein

l i18 ! ¯ l in8 !
sai1

mdl i1
8
¯ sain

mdl in
8zsl i1

−l i1
8 dei1

+¯+sl in
−l in

8 dein
− k̄stdzli1

ei1
+¯+l in

einD
= e−m o

l i1
8 =0

`

¯ o
l in
8 =0

`
1

l i18 ! ¯ l in8 !
sai1

mdl i1
8
¯ sain

mdl in
8

3 o
l i1

=l i1
8

`

¯ o
l in

=l in
8

`

ksl i1
−l i1

8 dei1
+¯+sl in

−l in
8 dein

zsl i1
−l i1

8 dei1
+¯+sl in

−l in
8 dein

− k̄stdzhi1,. . .,inj

= e−s1−ai1
−¯−ain

dm o
ki1

=0

`

¯ o
kin

=0

`

kki1
ei1

+¯+kin
ein

zki1
ei1

+¯+kin
ein

− k̄stdzhi1,. . .,inj

= e−s1−ai1
−¯−ain

dmo
k=0

n

o
h j1,. . .,jkj#hi1,. . .,inj

kh j1,. . .,jkjz̃h j1,. . .,jkj − k̄stdzhi1,. . .,inj. sA2d

We now claim that

z̃hi1,. . .,inj = o
k=0

n

s− 1dn−k o
h j1,. . .,jkj#hi1,. . .,inj

zh j1,. . .,jkj. sA3d

This can be proved by induction. Forn=0 this statement is
clearly true, sincezx= z̃x. Suppose then that for somenù0,
the statement is true for all 0ømøn. Then we have

zhi1,. . .,in+1j = o
k=0

n+1

o
h j1,. . .,jkj#hi1,. . .,in+1j

z̃h j1,. . .,jkj = z̃hi1,. . .,in+1j

+ o
k=0

n

o
h j1,. . .,jkj#hi1,. . .,in+1j

z̃h j1,. . .,jkj, sA4d

and so

z̃hi1,. . .,in+1j = zhi1,. . .,in+1j − o
k=0

n

o
h j1,. . .,jkj#hi1,. . .,in+1j

o
l=0

k

s− 1dk−l

3 o
h j18,. . .,j l8j#h j1,. . .,jkj

zh j18,. . .,j l8j. sA5d

Now, for each seth j1, . . . ,jkj appearing in the sum, a given
subset h j18 , . . . ,j l8j occurs only once. Thek-element sets
h j1, . . . ,jkj which containh j18 , . . . ,j l8j as a subset must be of
the form h j18 , . . . ,j l8jø h j19 , . . . ,jk−l9 j, where

h j19 , . . . ,jk−l9 j# hi1, . . . ,in+1j / h j18 , . . . ,j l8j. Therefore, there are
s n+1−l

k−l
d distinct k-element sets which containh j18 , . . . ,j l8j. Re-

arranging the sum, we obtain

z̃hi1,. . .,in+1j = zhi1,. . .,in+1j − o
l=0

n

o
h j1,. . .,j lj#hi1,. . .,in+1j

zh j1,. . .,j lj

3 o
k=l

n

s− 1dk−lSn + 1 − l

k − l
D = zhi1,. . .,in+1j

− o
l=0

n

o
h j1,. . .,j lj#hi1,. . .,in+1j

zh j1,. . .,j lj
f− s− 1dn+1−lg

= o
l=0

n+1

s− 1dn+1−l o
h j1,. . .,j lj#hi1,. . .,in+1j

zh j1,. . .,j lj
. sA6d

This completes the induction step and proves the claim.
We are almost ready to derive the expression for

dz̃hi1,. . .,inj /dt. Before doing so, we state the following iden-
tity, which we will need in our calculation:

p
i=1

n

s1 − aid = o
k=0

n

s− 1dk o
hi1,. . .,ikj#h1,. . .,nj

ai1
¯ aik

sA7d

We now have
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dz̃hi1,. . .,inj

dt
= o

k=0

n

s− 1dn−k o
h j1,. . .,jkj#hi1,. . .,inj

dzh j1,. . .,jkj

dt

= o
k=0

n

s− 1dn−k o
h j1,. . .,jkj#hi1,. . .,inj

Se−s1−a j1
−¯−a jk

dmo
l=0

k

o
h j18,. . .,j l8j#h j1,. . .,jkj

kh j18,. . .,j l8jz̃h j18,. . .,j l8j − k̄stdzh j1,. . .,jkjD
= o

l=0

n

o
h j1,. . .,j lj#hi1,. . .,inj

kh j1,. . .,j lj
z̃h j1,. . .,j ljo

k=l

n

s− 1dn−k o
h j18,. . .,jk−l8 j#hi1,. . .,inj/h j1,. . .,j lj

e−s1−a j1
−¯−a j l

−a j1
8 −¯−a jk−l8 dm − k̄stdz̃hi1,. . .,inj

= o
l=0

n

o
h j1,. . .,j lj#hi1,. . .,inj

kh j1,. . .,j lj
z̃h j1,. . .,j lj

e−s1−a j1
−¯−a j l

dm o
k−l=0

n−l

s− 1dn−ls− 1dk−l

3o
h j18,. . .,jk−l8 j#hi1,. . .,inj/h j1,. . .,j lj

ea j18
m
¯ ea jk−l8 m − k̄stdz̃hi1,. . .,inj

= o
l=0

n

o
h j1,. . .,j lj#hi1,. . .,inj

kh j1,. . .,j lj
z̃h j1,. . .,j lj

s− 1dn−le−s1−a j1
−¯−a j l

dm

3p
i[hi1,. . .,inj/h j1,. . .,j lj

s1 − eaimd − k̄stdz̃hi1,. . .,inj = e−s1−ai1
−¯−ain

dmo
l=0

n

o
h j1,. . .,j lj#hi1,. . .,inj

kh j1,. . .,j lj
z̃h j1,. . .,j lj

3p
i[hi1,. . .,inj/h j1,. . .,j lj

s1 − e−aimd − k̄stdz̃hi1,. . .,inj, sA8d

which is exactly Eq.(13).

APPENDIX B: DERIVATION OF THE LOCALIZATION LENGTHS

In this section we derive the expression fordkl̃ ilhi1,. . .,inj /dt. We have

dkl ilhi1,. . .,inj

dt
= o

l i1
=0

`

¯ o
l in

=0

`

o
l i=0

`

l iSe−m o
l i1
8 =0

l i1

¯ o
l in
8 =0

l in

o
l i8=0

l i ksl i1
−l i1

8 dei1
+¯+sl in

−l in
8 dein

+sl i−l i8dei

l i18 ! ¯ l in8 ! l i8!

3 sai1
mdl i1

8
¯ sain

mdl in
8 saimdl i8zsl i1

−l i1
8 dei1

+¯+sl in
−l in

8 dein
+sl i−l i8dei

− k̄stdzli1
ei1

+¯+l in
ein

+l ieiD
= e−m o

l i1
8 =0

`

· . . . ·o
l in
8 =0

`

o
l i8=0

` sai1
mdl i1

8
¯ sain

mdl in
8 saimdl i8

l i18 ! ¯ l in8 ! l i8!
3 o

ki1
=0

`

¯ o
kin

=0

`

o
ki=0

`

ski + l i8dkki1
ei1

+¯+kin
ein

+kiei
zki1

ei1
+¯+kin

ein
+kiei

− k̄stdkl ilhi1,. . .,inj = e−s1−ai1
−¯−ain

−aidmSo
k=0

n

o
h j1,. . .,jkj#hi1,. . .,inj

kh j1,. . .,jk,ij
kl̃ ilh j1,. . .,jkj

+ aimo
k=0

n+1

o
h j1,. . .,jkj#hi1,. . .,in,ij

kh j1,. . .,jkjz̃h j1,. . .,jkjD − k̄stdkl ilhi1,. . .,inj = e−s1−ai1
−¯−ain

−aidmo
k=0

n

o
h j1,. . .,jkj#hi1,. . .,inj

3 skh j1,. . .,jk,ij

3kl̃ ilh j1,. . .,jkj + aimkh j1,. . .,jkjz̃h j1,. . .,jkj + aimkh j1,. . .,jk,ij
z̃h j1,. . .,jk,ij

d − k̄stdkl ilhi1,. . .,inj. sB1d

We therefore have that
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dkl̃ ilhi1,. . .,inj

dt
= o

k=0

n

s− 1dn−k o
h j1,. . .,jkj#hi1,. . .,inj

dkl ilh j1,. . .,jkj

dt

= o
k=0

n

s− 1dn−k o
h j1,. . .,jkj#hi1,. . .,inj

Se−s1−a j1
−¯−a jk

−aidmo
l=0

k

o
h j18,. . .,j l8j#h j1,. . .,jkj

skh j18,. . .,j l8,ijkl̃ ilh j18,. . .,j l8j

+ aimkh j18,. . .,j l8jz̃h j18,. . .,j l8j + aimkh j18,. . .,j l8,ijz̃h j18,. . .,j l8,ijd − k̄stdkl ilh j1,. . .,jkjD
= o

l=0

n

o
h j18,. . .,j l8j#hi1,. . .,inj

s− 1dn−le−s1−a j18
−¯−a j l

8−aidmskh j18,. . .,j l8,ijkl̃ ilh j18,. . .,j l8j

+ aimkh j18,. . .,j l8jz̃h j18,. . .,j l8j + aimkh j18,. . .,j l8,ijz̃h j18,. . .,j l8,ijd

3o
k−l=0

n−l

s− 1dk−l o
h j1,. . .,jk−lj#hi1,. . .,inj/h j18,. . .,j l8j

ea j1
m
¯ ea jk−l

m − k̄stdkl̃ ilhi1,. . .,inj

= e−s1−ai1
−¯−ain

−aidmo
k=0

n

o
h j1,. . .,jkj#hi1,. . .,inj

skh j1,. . .,jk,ij
kl̃ ilh j1,. . .,jkj

+ aimkh j1,. . .,jkjz̃h j1,. . .,jkj + aimkh j1,. . .,jk,ij
z̃h j1,. . .,jk,ij

d

3 p
j[hi1,. . .,inj/h j1,. . .,jkj

s1 − e−a jmd− k̄stdkl̃ ilhi1,. . .,inj, sB2d

which is exactly the expression in Eq.(25).

APPENDIX C: NUMERICAL DETAILS

The finite sequence length equations, given by Eq.(11),
may be expressed in vector form

dzW

dt
= BzW − skW ·zWdzW. sC1d

At equilibrium, we therefore have that

zW =
1

kW ·zW
BzW. sC2d

The equilibrium solution may be found using fixed-point it-
eration, via the equation

zWn+1 =
1

kW ·zWn

BzWn. sC3d

The iterations are stopped when thezn stop changing. This is
determined by introducing a cutoff parameterd and stopping
iterating when the fractional change of each of the compo-
nents afterNe iterations is smaller thand. Ne is chosen to be
sufficiently large so that, on average, each base mutates at
least once afterNe iterations. Thus, we chooseNe=1/e.

What this method does is account for the fact that equili-
bration takes longer for smaller values ofe. This means that
the smaller the value ofe, the more times it is necessary to
iterate before comparing the changes in thezWn. For our two-
gene simulation, we tookd=10−4 and zW0=s1,1d. We chose
this initial condition to show that, even though backmuta-
tions may become small at large sequence lengths, they still
strongly affect the equilibrium solution. By iterating a suffi-
cient number of times, the cumulative effect of the backmu-
tations becomes sufficiently large to lead to a unique equi-
librium solution, independent of the initial condition.
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